
CEWES MSRC/PET TR/98-25

The CacheBench Report

by

Phillip J. Mucci
Kevin London

04h01898



Work funded by the DoD High Performance Computing
Modernization Program CEWES
Major Shared Resource Center through

Programming Environment and Training (PET)

Supported by Contract Number: DAHC 94-96-C0002
Nichols Research Corporation

Views, opinions, and/or findings contained in this report are those of the author(s) and should not be
construed as an official Department of Defense Position, policy, or decision unless so designated by
other official documentation.



The CacheBench Report

Philip J. Mucci

Kevin London

mucci@cs.utk.edu

london@cs.utk.edu

March 1998

1 Introduction

CacheBench is a benchmark designed to evaluate the performance of the memory hierarchy of
computer systems. Its speci�c focus is to parameterize the performance of possibly multiple
levels of cache present on and o� the processor. By performance, we mean raw bandwidth in
megabytes per second. Of interest to us is the ability of the cache to sustain large, unit-stride,

oating point workloads.

1.1 Cache Architecture

Caches are essentially very small, high speed memories designed to speed computation among
repeatedly accessed data. They are found on virtually all commercially available processors
from small sixteen bit embedded microprocessors to the large, multi-million transistor RISC
chips found in today's workstations and supercomputers. Caches exploit both spatial and
temporal locality. Spatial locality is the concept that data items that are physically located
near each other in main memory will likely be accessed together. Temporal locality is the
concept that a data item that is frequently accessed will likely be accessed again in the near
future.

When the processor wishes to operate on an item from main memory, it issues a load to
the cache. If the item is resident in the cache, this is called a cache hit. If not, it is called a
cache miss, and the load request is forwarded to main memory, which moves the data from
main memory into a cache line. A detailed discussion of cache and processor architecture

1



is well beyond the scope of this paper, but interested readers are referred to Hennessey and
Patterson [1]. An example in that textbook serves as the basis for this benchmark.

1.2 Goals of CacheBench

The goal of this benchmark is to establish peak computation rate given optimal cache reuse
and to verify the e�ectiveness of high levels of compiler optimization on tuned and untuned
codes. Many scienti�c applications in use have signi�cant resource requirements in terms of
memory footprint. High speedups of these applications are often achieved through exploiting
the cache. This is especially true given the widening gap between processor speed and main
memory. Thus, this benchmark will provide us with a good basis for application performance
modeling and prediction for those applications that have already been substantially tuned
for cache reuse.

2 How it works

CacheBench currently incorporates eight di�erent benchmarks. Each one performs repeated
access to data items on varying vector lengths. Timings are taken for each vector length
over a number of iterations. Computing the product of iterations and vector length gives
us the total amount of data accessed in bytes. This total is then divided by the total time
to compute a bandwidth �gure. This �gure is in megabytes per second. In addition to this
�gure, the average access time in nanoseconds per each data item is computed and reported.
The tests are as follows.

� Cache Read

� Cache Write

� Cache Read/Modify/Write

� Hand tuned Cache Read

� Hand tuned Cache Write

� Hand tuned Cache Read/Modify/Write

� memset() from the C library

� memcpy() from the C library

2



The �rst six of these tests access their data through arrays of a prede�ned base type.
This type is set at compile time and defaults to double. The rationale for this is that some
systems perform memory access di�erently depending on the functional unit that generated
the miss. The default data-type can be altered by setting the USE <type> compiler de�nition
in the Makefile. Currently USE CHAR, USE INT, USE FLOAT and USE DOUBLE are supported.

The �rst three of the tests are intended to provide us with information about how good
the compiler is. They are very straightforward consisting of only a few lines of code.

The second three are intended to re
ect portable, tuned code as found in production
applications. Here, the optimizer has little opportunity to enhance the code, and in fact,
the numbers from these three tests often do not change very much given di�erent levels of
optimization.

The last two tests are included as points of comparison. These routines are often heavily
used in C applications, but vary greatly in e�ciency. One would expect high performance
out of these benchmarks in terms of memory bandwidth, but more often than not, the results
have been disappointing.

All of these benchmarks run for a �xed amount of time, which is tunable at run-time. The
rationale for this is the widely varying performance of processors these days. CacheBench
intends to provide the user with relatively quick feedback about the memory performance
of the machine in use. However, this timing restriction limits the accuracy with which we
can report the results. A faster machine that runs the test for a higher number of iterations
has less relative error. This makes accurate statistical analysis di�cult but it will be �xed
in the next release.

2.1 Cache Read

This benchmark is designed to provide us with read bandwidth for varying vector lengths in
a compiler optimized loop. For the cases where the vector length is less than the cache size,
the data will come completely from cache and the resulting bandwidth will be much higher.

The pseudocode for this test is as follows:

for all vector length

timer start

for iteration count

for I = 0 to vector length

register += memory[I]

timer stop

3



2.2 Cache Write

This benchmark is designed to provide us with write bandwidth for varying vector lengths in
a compiler optimized loop. This benchmark is greatly a�ected by architectural peculiarities
in the memory subsystem. Replacement policy, associativity, blocking and write bu�ering
all play important factors in the performance of this benchmark. For example, a write-back
cache will show a much higher bandwidth because it frequently avoids unnecessary refer-
ences to main memory. In addition, many systems coalesce and bu�er multiple writes to
cache/memory. This can hide much of the latency of the underlying hardware.

for all vector length

timer start

for iteration count

for I = 0 to vector length

memory[I] = register++

timer stop

2.3 Cache Read/Modify/Write

This benchmark is designed to provide us with read/modify/write bandwidth for varying
vector lengths in a compiler optimized loop. This benchmark generates twice as much mem-
ory tra�c, as each data itemmust be �rst read from memory/cache to register and then back
to cache. Each direction of transfer is counted in the computation of bandwidth. Bandwidth
for this test is often a bit higher than the sum of the previous two tests. The bene�t comes
from compilers' ability to better schedule operations and group memory accesses to amortize
the cost of the store.

for all vector length

timer start

for iteration count

for I = 0 to vector length

memory[I]++

timer stop

2.4 Hand Tuned Versions

A full description of the hand tuned versions of these codes is beyond the needs of this paper.
However, to provide some background, the following optimizations were applied:

4



� Degree eight unrolling. Each loop now references eight memory elements instead of
one.

� Dependency analysis. Each operation is independent of the previous seven.

� Register re-use. Registers are allocated to memory locations and reused whenever
possible.

The optimizations re
ect what a minimally good compiler should be doing on these simple
loops. In CacheBench, if we see our compiler loops not reaching the performance of our tuned
loops, we can conclude that our compiler is poor. The complexity of these loops is minimal
and any compiler should be able to optimize them. It is possible, that our compiler optimized
loops will outperform our hand-tuned loops, if the compiler inserts prefetching and coalesces
memory operations into block transfers.

2.5 Memory Set

The C library provides us with the function memset() to initialize regions of memory. This
function is often highly optimized as it is widely used both in and outside of the operating
system. Often, this function is either assembly code placed inline in the executable from a
header �le, or it is an intrinsic function that the compiler recognizes and replaces automati-
cally. Some systems have additional hardware on chip to perform this operation, speci�cally
when the value to be set to is zero. This benchmark allows us to compare the numbers from
our two formulations of memory write with this version. More often than not, we �nd that
both versions outperform a call to this routine.

for all vector length

timer start

for iteration count

for I = 0 to vector length

memset(vector1,0xf0,length)

timer stop

2.6 Memory Copy

The C library also provides us with the function memcpy() to copy regions of memory.
It is also usually an intrinsic or inline assembler function. This benchmark allows us to
compare the numbers from our two versions of memory read/modify/write with this version.
Frequently we �nd that memcpy() is not as fast as it should be. While this function may not

5



appear explicitly in Fortran application codes, it is used by many of the supporting libraries,
like MPI.

for all vector lengths

timer start

for iteration count

for I = 0 to vector length

memcpy(dest,src,vector length)

timer stop

3 Using CacheBench

3.1 Obtain the distribution

Download the latest release from either of the following URLs:

http://www.cs.utk.edu/�mucci/cachebench

ftp://cs.utk.edu/pub/mucci/cachebench.tar.gz

First, we must unpack the installation using gzip and tar.

kiwi> gzip -dc cachebench.tar.gz | tar xvf -

kiwi> cd cachebench

kiwi> ls

CVS/ Version cachegraph.gp index.html

Makefile cachebench.c conf/ make.def

README cachebench.html doc/ samples/

3.2 Build the distribution

First we must con�gure the build for our operating system. Running makewith no arguments
lists the possible targets.

kiwi> make

Please use one of the following targets:

sunos sunos4

solaris sunos5

sunmp

6



alpha

linux

hppa

sgi-r4k

sgi-r5k

sgi-r8k

sgi-r10k

sgi-o2k o2k

sgi-pca pca

t3e

t3d

ibm-pow2 ibm-sp2 sp2 pow2

ibm-pow pow

Con�gure the build. Here, we are using a Solaris workstation.

kiwi> make solaris

ln -s conf/make.solaris make.def

Examine the make.def �le to ensure that the proper compiler 
ags are being used. Full
optimization should be enabled by default. Some machines have model speci�c 
ags that
can signi�cantly a�ect the performance of this benchmark. Some of the make.def �les have
these options commented out. The user should examine his system and be sure that the
appropriate options are enabled.

kiwi> make cachebench

cc -fast -dalign -DREGISTER -DUSE_DOUBLE -o cachebench cachebench.c

3.3 Running CacheBench

While CacheBench can be run from the command line, it is designed to be executed through
use of the Makefile. The resulting data�les for each of the runs will be left in the �le:
tmp/<test>-<HOSTNAME>-<DATATYPE>.dat.

Immediately after running, the Makefile will attempt to graph the results. If GNUPlot
is not available on this system, simply copy cacheperf-<HOSTNAME>-<DATATYPE>.tar to
another machine that has GNUPlot, extract the tar �le and process each GNUPlot script �le
with gnuplot < <HOSTNAME>.gp > <file>.ps.

7



kiwi> make run

Measuring Read...

Measuring Write...

Measuring RMW...

Measuring Tuned Read...

Measuring Tuned Write...

Measuring Tuned RMW...

Measuring memcpy()...

Measuring memset()...

.

[commands deleted for brevity].

.

3.4 Arguments to CacheBench

Usage: cachebench -rwbtsp [-x #] [-m #] [-d #] [-e #]

-r Read benchmark

-w Write benchmark

-b Read/Modify/Write benchmark

-t Use hand tuned versions of the above

-s memset() benchmark

-p memcpy() benchmark

-x Number of measurements to take between powers of 2

-m Specify the log base 2 of the available physical memory

-d Number of seconds per iteration

-e Number of times to repeat test for each vector size

Datatype used is double, 8 bytes

Defaults if tty: -rwbsp -x1 -m24 -d5 -e2

Defaults if file: -b -x1 -m24 -d5 -e1

Note the fact that the defaults are di�erent depending on whether or not the output is
directed to a TTY or a �le. Again, the best way to run cachebench is with the Makefile.

8



4 Results on the CEWES MSRC Machines

The following graphs are taken from our runs on each of the CEWES MSRC machines during
dedicated time. Those machines are the SGI Origin 2000, the IBM SP and the Cray T3E.
The cache size and theoretical peak MFLOPS for each machine are listed as follows. The
peak MFLOPS is as reported by the vendor and is simply computed as a product of the
clock speed times the number of independent 
oating point multiplies and adds that can be
computed per cycle.

Machine Cache Peak
SGI Origin 2000 32K,4MB 390
IBM SP 128K 240
Cray T3E 8K,96K 900

9



4.1 Cache Reads

0

200

400

600

800

1000

1200

1400

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of read at CEWES MSRC

Cray T3E, jim
Origin 2000, pagh

IBM SP, osprey

Figure 1: Performance of Compiler Optimized Memory Read

In Figures 1 and 2, we notice that the read performance of the Cray T3E is much lower
for the hand-tuned version. For the compiler optimized version, we �nd a two to threefold
improvement for vector sizes that lie in cache. The Cray compiler seems to have a very
di�cult time recognizing what optimized code is doing. This means that tuned applications
ported to the Cray might not perform very well. For the SP and the Origin 2000, the only
di�erence we �nd is the steepness of the portion of the curve lying substantially below the
cache size. Here, we are seeing the overhead of the compiler's code that handles the special
cases where the vector length is not a multiple of the degree of unrolling. In the tuned
version, this residual code does not exist and thus there are no branches in the underlying
assembly language. The SP has a hardware loop capability allowing zero cycle branches.
For the hand-tuned version, there is no residual code, so the compiler simply sets up the
hardware loop and lets it run with no overhead. Thus, we see no performance fallo� at
smaller vector lengths.

10



0

200

400

600

800

1000

1200

1400

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of Hand-Tuned Read at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 2: Performance of Hand-tuned Memory Read

11



4.2 Cache Writes

0

500

1000

1500

2000

2500

3000

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of write at CEWES MSRC

Cray T3E, jim
Origin 2000, pagh

IBM SP, osprey

Figure 3: Performance of Compiler Optimized Memory Write

In Figures 3 and 4, we can see that the performance of the compiler optimized loop is equal
to or greater than that of the hand tuned loop as is the case for reads. The reader will notice
that for vectors residing completely in L1 cache, the write bandwidth is equal to or greater
than the read bandwidth. On the Origin, the L2 cache is signi�cantly slower to write to
than to read from. We infer that the compiler is probably prefetching on the read case and
that there is inadequate pipelining between L2 cache and memory. For the T3E, we again
notice how poorly the compiler does on the optimized code.

12



0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of Hand-Tuned Write at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 4: Performance of Hand-tuned Memory Write

13



4.3 Cache Read/Modify/Write

0

500

1000

1500

2000

2500

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of rmw at CEWES MSRC

Cray T3E, jim
Origin 2000, pagh

IBM SP, osprey

Figure 5: Performance of Compiler Optimized Memory Read/Modify/Write

Of interest in Figures 5 and 6 is the di�erence in performance of the IBM SP. Note that in the
hand-tuned version, performance averages about six hundred megabytes per second better
than that of the compiler optimized version. In the tuned version, the compiler is probably
scheduling/aggregating memory access into double-word loads and stores, a unique feature
of this architecture. This probably happens in the compiler optimized version, but the fact
that the compiler must also unroll the loop and optimize register usage seems to complicate
its analysis. Also of interest is the better performance on the T3E in level two cache for the
untuned version. Software pipelining, the mixing instructions from one iteration to another
may be aiding this code to hide the latency of the level two cache misses. We are seeing this
behavior in the case for reads and writes as well.

14



0

500

1000

1500

2000

2500

3000

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of Hand-Tuned RMW at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 6: Performance of Hand-tuned Memory Read/Modify/Write

15



4.4 memset()

0

200

400

600

800

1000

1200

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of memset() at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 7: Performance of memset()

4.5 memcpy()

Figures 7 and 8 are provided as reference. The performance of these two routines, when
compared with the write and read-modify-write benchmark, clearly indicates that the user
would be better o� using a typed version coded in C or Fortran rather than these library calls.
The reason for this is that they are often coded at the byte level for maximum 
exibility,
not performance. By knowing the type and the alignment of the data ahead of time, the
user could easily write a simple loop, let the compiler optimize it and still see much better
performance. The only exception is the case where the vector is smaller than L2 cache on
the T3E.

16



0

500

1000

1500

2000

2500

3000

3500

4000

256 512 1K 2K 4K 8K 16K 32K 64K 128K 256K 512K 1MB 4MB 16MB

M
B

/S
ec

Vector Length in bytes

Cache Performance of memcpy() at CEWES MSRC

Cray T3E, jim
IBM SP, osprey

Origin 2000, pagh

Figure 8: Performance of memcpy()

17



5 Future work

� Provide option for measuring speci�c vector lengths.

� Use specialized, high-resolution timers where available.

� Add benchmark for pointer traversal to measure latency of cache hit and miss.

� Add parameters to tune the placement and padding of the vectors.

� Change from constant run-time to constant iterations.

� Add unoptimized, untuned case for a baseline.

� Standardize con�guration with GNU autoconf.

� Grab machine con�guration and store it with each run.

� Standardize data/graph naming scheme with timestamp.

6 References

1. Computer Architecture, A Quantitative Approach by David A. Patterson, John L. Hen-
nessy, David Goldberg, Published by Morgan Kaufmann Publishing, San Francisco,
1996, ISBN: 1558603298

2. The Science of Computer Benchmarking (Software, Environments, Tools) by Roger W.
Hockney, Published by Society for Industrial and Applied Mathematics, Philadelphia,
1996, ISBN: 0898713633

18


